


      2 
 

ÍNDICE 

 

1. Unidad 1: La ingeniería de Software y los modelos del proceso ...........................3 

Tema 2: Modelos del Proceso de Software ................................................................... 3 

Objetivo: ........................................................................................................................ 3 

Introducción: ................................................................................................................. 3 

2. Información de los subtemas .............................................................................4 

2.1 Subtema 1: Modelos de proceso prescriptivo .................................................... 4 

Modelo de la cascada ................................................................................................ 4 

Modelos de proceso incremental ............................................................................. 6 

Modelos de proceso evolutivo .................................................................................. 7 

Modelos concurrentes ............................................................................................ 10 

2.2 Subtema 2: Modelos de proceso especializado ............................................... 12 

Desarrollo basado en componentes ....................................................................... 12 

El modelo de métodos formales ............................................................................. 14 

Desarrollo de software orientado a aspectos ......................................................... 14 

2.3 Subtema 3: El Proceso unificado ...................................................................... 16 

Fases de proceso unificado ..................................................................................... 16 

2.4 Subtema 4: Modelos del proceso personal y del equipo .................................. 19 

Proceso personal del software (PPS) ...................................................................... 19 

Proceso del equipo de software (PES) .................................................................... 20 

3. Preguntas de Comprensión de la Unidad .......................................................... 22 

4. Material Complementario ................................................................................ 23 

5. Bibliografía ...................................................................................................... 24 

 

 

 

 



Modelos del Proceso de Software 

3 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

1. Unidad 1: La ingenierí a de 
Software y los modelos del 
proceso 

Tema 2: Modelos del Proceso de Software 

Objetivo: 

Comprender las actividades de ingeniería que componen el proceso del software y sus 

modelos de proceso. 

 

Introducción: 

El desarrollo de software comprende actividades debidamente establecidas por una 

metodología propia de su desarrollo, dichas actividades forman parte del llamado 

proceso de software, el cual está compuesto por algunos modelos genéricos con el fin 

de simplificar los procesos orientados a la producción de software de calidad.  

 

Los modelos de procesos, también conocidos como paradigmas de proceso, son 

caracterizados desde diferentes visiones o perspectivas arquitectónicas de otros 

modelos, sin embargo, es necesario precisar que dichos modelos no presentan 

descripciones definitivas de los procesos de software. Es preciso señalar que no existe 

un proceso ideal, depende del tipo de sistema y desde un punto de vista perfectible es 

posible dirigir un proyecto de software con nuevos métodos y técnicas. 
 

 

 

 

 

 

 

 

 



Modelos del Proceso de Software 

4 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

2. Informacio n de los subtemas 

2.1 Subtema 1: Modelos de proceso prescriptivo 

Antes de exponer cada uno de los tipos modelos de proceso prescriptivo, llamados 

también tradicional, es necesario señalar el origen, o dicho de mejor forma, la 

motivación que originó la propuesta de estos modelos para desarrollo de un proyecto 

de software.  

 

Los modelos de proceso prescriptivo fueron propuestos originalmente para poner 

orden en el caos del desarrollo de software. La historia indica que estos modelos 

tradicionales han dado cierta estructura útil al trabajo de ingeniería de software y 

que constituyen un mapa razonablemente eficaz para los equipos de software. Sin 

embargo, el trabajo de ingeniería de software y el producto que genera siguen “al 

borde del caos”. (Pressman, 2010, pág. 33) 

 

En ese contexto, se describen a continuación los modelos de proceso de software, 

cada uno con actividades estructurales y diferentes tipos de énfasis: 

Modelo de la cascada 

A continuación, se detallan algunas definiciones para el modelo en mención: 

 

“Toma las actividades fundamentales del proceso de especificación, desarrollo, 

validación y evolución y, luego, los representa como fases separadas del proceso, tal 

como especificación de requerimientos, diseño de software, implementación, pruebas, 

etcétera” (Sommerville, 2011, pág. 29). 

 

El Laboratorio Nacional de Calidad del Software (2009) señala: “es un enfoque 

metodológico que ordena rigurosamente las etapas del ciclo de vida del software, de 

forma que el inicio de cada etapa debe esperar a la finalización de la inmediatamente 

anterior” (pág. 25). 

 

“El modelo en cascada es un ejemplo de un proceso dirigido por un plan; en principio, 

usted debe planear y programar todas las actividades del proceso, antes de comenzar 

a trabajar con ellas” (Sommerville, 2011, pág. 30). 

 

 

Pressman (2010) añade lo siguiente del modelo en cascada: 

 



Modelos del Proceso de Software 

5 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

Sugiere un enfoque sistemático y secuencial para el desarrollo del software, que 

comienza con la especificación de los requerimientos por parte del cliente y avanza 

a través de planeación, modelado, construcción y despliegue, para concluir con el 

apoyo del software terminado. (pág. 34) 

 

 
Figura 1. El modelo en cascada 

Fuente: Ingeniería de software, (Sommerville, 2011, pág. 30) 

 

Por su parte Sommerville (2011) destaca al modelo en cascada como “un ejemplo de 

un proceso dirigido por un plan; en principio, usted debe planear y programar todas las 

actividades del proceso, antes de comenzar a trabajar con ellas” (pág. 30), 

puntualizando de la siguiente manera las etapas de este modelo: 

 

1. Análisis y definición de requerimientos. Los servicios, las restricciones y las metas 

del sistema se establecen mediante consulta a los usuarios del sistema. Luego, se 

definen con detalle y sirven como una especificación del sistema. 

2. Diseño del sistema y del software. El proceso de diseño de sistemas asigna los 

requerimientos, para sistemas de hardware o de software, al establecer una 

arquitectura de sistema global. El diseño del software implica identificar y describir las 

abstracciones fundamentales del sistema de software y sus relaciones. 

 

3. Implementación y prueba de unidad. Durante esta etapa, el diseño de software se 

realiza como un conjunto de programas o unidades del programa. La prueba de unidad 

consiste en verificar que cada unidad cumpla con su especificación. 

4. Integración y prueba de sistema. Las unidades del programa o los programas 

individuales se integran y prueban como un sistema completo para asegurarse de que 

se cumplan los requerimientos de software. Después de probarlo, se libera el sistema 

de software al cliente. 

5. Operación y mantenimiento. Por lo general (aunque no necesariamente), ésta es la 

fase más larga del ciclo de vida, donde el sistema se instala y se pone en práctica. El 



Modelos del Proceso de Software 

6 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

mantenimiento incluye corregir los errores que no se detectaron en etapas anteriores 

del ciclo de vida, mejorar la implementación de las unidades del sistema e incrementar 

los servicios del sistema conforme se descubren nuevos requerimientos. 

Modelos de proceso incremental 

“El desarrollo incremental se basa en la idea de diseñar una implementación inicial, 

exponer ésta al comentario del usuario, y luego desarrollarla en sus diversas versiones 

hasta producir un sistema adecuado” (Sommerville, 2011, pág. 32). 

 

El Laboratorio Nacional de Calidad del Software (2009) sostiene: 

 

El modelo incremental combina elementos del modelo en cascada con la filosofía 

interactiva de construcción de prototipos. Se basa en la filosofía de construir 

incrementando las funcionalidades del programa. Este modelo aplica secuencias 

lineales de forma escalonada mientras progresa el tiempo en el calendario. Cada 

secuencia lineal produce un incremento del software.  

 

Siendo así, Pressman asegura: “El modelo incremental aplica secuencias lineales en 

forma escalonada a medida que avanza el calendario de actividades. Cada secuencia 

lineal produce “incrementos” de software susceptibles de entregarse de manera 

parecida a los incrementos producidos en un flujo de proceso evolutivo” (Pressman, 

2010, pág. 35). 

 

Cuando se utiliza un modelo incremental, es frecuente que el primer incremento 

sea el producto fundamental. Es decir, se abordan los requerimientos básicos, pero 

no se proporcionan muchas características suplementarias (algunas conocidas y 

otras no). El cliente usa el producto fundamental (o lo somete a una evaluación 

detallada). (Pressman, 2010, pág. 35) 

 

 
Figura 2. El modelo incremental 

Fuente: Ingeniería de software: Un enfoque práctico, (Pressman, 2010, pág. 36) 



Modelos del Proceso de Software 

7 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

El desarrollo incremental es útil en particular cuando no se dispone de personal 

para la implementación completa del proyecto en el plazo establecido por el 

negocio. Los primeros incrementos se desarrollan con pocos trabajadores. Si el 

producto básico es bien recibido, entonces se agrega más personal (si se requiere) 

para que labore en el siguiente incremento. Además, los incrementos se planean 

para administrar riesgos técnicos. (Pressman, 2010, pág. 36) 

 

Modelos de proceso evolutivo 

“Los modelos evolutivos son iterativos. Se caracterizan por la manera en la que 

permiten desarrollar versiones cada vez más completas del software” (Pressman, 

2010, pág. 36).  

 

Se presentan a continuación dos modelos del proceso evolutivo: 

 

 

Hacer prototipos 

“Un prototipo es una versión inicial de un sistema de software que se usa para 

demostrar conceptos, tratar opciones de diseño y encontrar más sobre el problema y 

sus posibles soluciones” (Sommerville, 2011, pág. 45). 

 

El paradigma de construcción de prototipos comienza con la recolección de 

requisitos. El desarrollador y el cliente encuentran y definen los objetivos globales 

para el software, identifican los requisitos conocidos y las áreas del esquema en 

donde es obligatoria más definición. Entonces aparece un diseño rápido. 

(Laboratorio Nacional de Calidad del Software, 2009, pág. 31) 

 

En similar idea, Pressman (2010) afirma: 

 

El paradigma de hacer prototipos comienza con comunicación (figura 3). Usted se 

reúne con otros participantes para definir los objetivos generales del software, 

identifica cualesquiera requerimientos que conozca y detecta las áreas en las que es 

imprescindible una mayor definición. Se planea rápidamente una iteración para 

hacer el prototipo, y se lleva a cabo el modelado (en forma de un “diseño rápido”). 

Éste se centra en la representación de aquellos aspectos del software que serán 

visibles para los usuarios finales (por ejemplo, disposición de la interfaz humana o 

formatos de la pantalla de salida). (Pressman, 2010, pág. 37) 

 



Modelos del Proceso de Software 

8 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 
Figura 3. El paradigma de hacer prototipos 

Fuente: Ingeniería de software: Un enfoque práctico, (Pressman, 2010, pág. 37) 

 

El diseño rápido lleva a la construcción de un prototipo. Éste se entrega y es 

evaluado por los participantes, que dan retroalimentación para mejorar los 

requerimientos. La iteración ocurre a medida de que el prototipo es afinado para 

satisfacer las necesidades de distintos participantes, y al mismo tiempo le permite a 

usted entender mejor lo que se necesita hacer. (Pressman, 2010, pág. 37) 

 

El paradigma de hacer prototipos es apetecido por los ingenieros de software y los 

participantes involucrados en el proyecto, la sensación del sistema real es tomada por 

los usuarios, mientras que los desarrolladores logran construir de inmediato, sin 

embargo, la elaboración de prototipos tiende a ocasionar problemas por las causas 

siguientes:  

 

1. Los participantes ven lo que parece ser una versión funcional del software, sin 

darse cuenta de que el prototipo se obtuvo de manera caprichosa; no perciben que 

en la prisa por hacer que funcionara, usted no consideró la calidad general del 

software o la facilidad de darle mantenimiento a largo plazo. Cuando se les informa 

que el producto debe rehacerse a fin de obtener altos niveles de calidad, los 

participantes gritan que es usted un tonto y piden “unos cuantos arreglos” para 

hacer del prototipo un producto funcional. Con demasiada frecuencia, el gerente de 

desarrollo del software cede. 

2. Como ingeniero de software, es frecuente que llegue a compromisos respecto de 

la implementación a fin de hacer que el prototipo funcione rápido. Quizá utilice un 

sistema operativo inapropiado, o un lenguaje de programación tan sólo porque 

cuenta con él y lo conoce; tal vez implementó un algoritmo ineficiente sólo para 

demostrar capacidad. Después de un tiempo, quizá se sienta cómodo con esas 

elecciones y olvide todas las razones por las que eran inadecuadas. La elección de 



Modelos del Proceso de Software 

9 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

algo menos que lo ideal ahora ha pasado a formar parte del sistema. (Pressman, 

2010, pág. 38) 

 

El modelo espiral 

Según Boehm el modelo espiral es un modelo evolutivo del proceso del software y se 

acopla con la naturaleza iterativa de hacer prototipos con los aspectos controlados y 

sistémicos del modelo de cascada. Tiene el potencial para hacer un desarrollo rápido 

de versiones cada vez más completas. Boehm describe el modelo del modo siguiente: 

 

 

El modelo de desarrollo espiral es un generador de modelo de proceso impulsado 

por el riesgo, que se usa para guiar la ingeniería concurrente con participantes 

múltiples de sistemas intensivos en software. Tiene dos características distintivas 

principales. La primera es el enfoque cíclico para el crecimiento incremental del 

grado de definición de un sistema y su implementación, mientras que disminuye su 

grado de riesgo. La otra es un conjunto de puntos de referencia de anclaje puntual 

para asegurar el compromiso del participante con soluciones factibles y 

mutuamente satisfactorias.  

 

 
Figura 4. Modelo en espiral de Boehm del proceso de software 

Fuente: Ingeniería de software: Un enfoque práctico, (Sommerville, 2011, pág. 49) 

 

“Las actividades de este modelo se conforman en una espiral, cada bucle representa 

un conjunto de actividades (…) no están fijadas a priori, sino que las siguientes se 

eligen en función del análisis de riesgos, comenzando por el bucle anterior”. 

(Laboratorio Nacional de Calidad del Software, 2009, pág. 29) 



Modelos del Proceso de Software 

10 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 

Al ser un modelo de ciclo de vida orientado a la gestión de riesgos se dice que uno 

de los aspectos fundamentales de su éxito radica en que el equipo que lo aplique 

tenga la necesaria experiencia y habilidad para detectar y catalogar correctamente 

riesgos. (Laboratorio Nacional de Calidad del Software, 2009, pág. 29) 

 

Según Sommerville (2011), cada ciclo en la espiral se divide en cuatro sectores: 

 

1. Establecimiento de objetivos. Se definen objetivos específicos para dicha fase del 

proyecto. Se identifican restricciones en el proceso y el producto, y se traza un plan de 

gestión detallado. Se identifican los riesgos del proyecto. Pueden planearse estrategias 

alternativas, según sean los riesgos. 

 

2. Valoración y reducción del riesgo. En cada uno de los riesgos identificados del 

proyecto, se realiza un análisis minucioso. Se dan acciones para reducir el riesgo. Por 

ejemplo, si existe un riesgo de que los requerimientos sean inadecuados, puede 

desarrollarse un sistema prototipo. 

3. Desarrollo y validación. Después de una evaluación del riesgo, se elige un modelo 

de desarrollo para el sistema. Por ejemplo, la creación de prototipos desechables sería 

el mejor enfoque de desarrollo, si predominan los riesgos en la interfaz del usuario. Si 

la principal consideración son los riesgos de seguridad, el desarrollo con base en 

transformaciones formales sería el proceso más adecuado, entre otros. Si el principal 

riesgo identificado es la integración de subsistemas, el modelo en cascada sería el 

mejor modelo de desarrollo a utilizar. 

4. Planeación. El proyecto se revisa y se toma una decisión sobre si hay que continuar 

con otro ciclo de la espiral. Si se opta por continuar, se trazan los planes para la 

siguiente fase del proyecto. 

 

El primer circuito alrededor de la espiral da como resultado el desarrollo de una 

especificación del producto; las vueltas sucesivas se usan para desarrollar un 

prototipo y, luego, versiones cada vez más sofisticadas del software. Cada paso por 

la región de planeación da como resultado ajustes en el plan del proyecto. El costo y 

la programación de actividades se ajustan con base en la retroalimentación 

obtenida del cliente después de la entrega. (Pressman, 2010, pág. 40) 

 

Modelos concurrentes 

“El modelo de desarrollo concurrente, en ocasiones llamado ingeniería concurrente, 

permite que un equipo de software represente elementos iterativos y concurrentes de 

cualquiera de los modelos de proceso” (Pressman, 2010, pág. 40). 

 



Modelos del Proceso de Software 

11 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 
Figura 5. Modelo de proceso concurrente 

Fuente: Ingeniería de software: Un enfoque práctico, (Pressman, 2010, pág. 41) 

 

La figura 5 muestra la representación esquemática de una actividad de ingeniería de 

software 

dentro de la actividad de modelado con el uso del enfoque de modelado concurrente. 

La actividad —modelado— puede estar en cualquiera de los estados mencionados en 

un momento dado. En forma similar, es posible representar de manera análoga otras 

actividades, acciones o tareas (por ejemplo, comunicación o construcción). Todas las 

actividades de ingeniería de software existen de manera concurrente, pero se hallan 

en diferentes estados. (Pressman, 2010, pág. 41) 

 

“El modelado concurrente define una serie de eventos que desencadenan transiciones 

de un estado a otro para cada una de las actividades, acciones o tareas de la ingeniería 

de software” (Pressman, 2010, pág. 42). 

 

El modelado concurrente es aplicable a todos los tipos de desarrollo de software y 

proporciona un panorama apropiado del estado actual del proyecto. En lugar de 

confinar las actividades, acciones y tareas de la ingeniería de software a una secuencia 

de eventos, define una red del proceso. Cada actividad, acción o tarea de la red existe 

simultáneamente con otras actividades, acciones o tareas. Los eventos generados en 

cierto punto de la red del proceso desencadenan transiciones entre los estados. 

(Pressman, 2010, pág. 42) 

 



Modelos del Proceso de Software 

12 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

2.2 Subtema 2: Modelos de proceso especializado  

“Los modelos de proceso especializado tienen muchas de las características de uno o 

más de los modelos tradicionales (…) Sin embargo, dichos modelos tienden a aplicarse 

cuando se elige un enfoque de ingeniería de software especializado” (Pressman, 2010, 

pág. 43). 

Desarrollo basado en componentes 

“El concepto de componentes para el desarrollo de software no es un concepto nuevo; 

para muchos autores simplemente es la evolución de la metodología orientada a 

objetos” (Troya, Vallecillo, & Fuentes, 2017) 

 

“El modelo de desarrollo basado en componentes incorpora muchas de las 

características del modelo espiral. Es de naturaleza evolutiva y demanda un enfoque 

iterativo para la creación de software (…) construye aplicaciones a partir de 

fragmentos de software prefabricados” (Pressman, 2010, pág. 43). 

 

El DSBC trata de sentar las bases para el diseño y desarrollo de aplicaciones 

distribuidas basadas en componentes software reutilizables. Dicha disciplina cuenta 

actualmente con un creciente interés, tanto desde el punto de vista académico 

como desde la industria, en donde la demanda de mecanismos y herramientas de 

desarrollo basados en componentes es cada día mayor. (Bertoa, Troya, & Vallecillo, 

2002) 

 

Pressman (2010) menciona que el modelo de desarrollo basado en componentes 

incorpora las etapas siguientes: 

 

1. Se investigan y evalúan, para el tipo de aplicación de que se trate, productos 

disponibles 

basados en componentes. 

2. Se consideran los aspectos de integración de los componentes. 

3. Se diseña una arquitectura del software para que reciba los componentes. 

4. Se integran los componentes en la arquitectura. 

5. Se efectúan pruebas exhaustivas para asegurar la funcionalidad apropiada. 

 

 

El modelo del desarrollo basado en componentes lleva a la reutilización del 

software, y eso da a los ingenieros de software varios beneficios en cuanto a la 

mensurabilidad. Si la reutilización de componentes se vuelve parte de la cultura, el 

equipo de ingeniería de software tiene la posibilidad tanto de reducir el ciclo de 

tiempo del desarrollo como el costo del proyecto. (Pressman, 2010, pág. 43) 



Modelos del Proceso de Software 

13 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 

 
Figura 6. Modelo del Ciclo de vida de DSBC 

Fuente: Aspectos de calidad en el desarrollo de software basado en componentes, (Bertoa, Troya, & 

Vallecillo, 2002) 

 

Según Rojas & García (2004), las aactividades que involucra el modelo del ciclo de vida 

para DSBC (figura 6), son las siguientes: 

 

Análisis de Requerimientos: En esta etapa del ciclo de vida los procesos y las 

necesidades del negocio se descubren y se expresan en los casos de uso. 

Selección, construcción, análisis y evaluación de la Arquitectura de Software: “La 

arquitectura del software define un sistema en términos de componentes 

computacionales y la interacción entre ellos”. 

Identificación y arreglo para requisitos particulares del Componente: En esta 

actividad, los componentes deben ser seleccionados por los requerimientos 

funcionales y de calidad que satisfaga cada componente. 

Integración del Sistema: En esta actividad se debe examinar, evaluar y determinar 

cómo va a ser la comunicación y la coordinación entre los componentes que harán 

parte del sistema. 

Pruebas: Posterior a la integración de los componentes se debe proceder con las 

pruebas, esto implica evaluar el funcionamiento de los componentes que fueron 

integrados en el sistema, si algún componente demuestra no estar funcionando de 

forma correcta se debe pensar en la posibilidad de reemplazarlo o modificarlo para 

luego proceder con la re-integración. 



Modelos del Proceso de Software 

14 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

Mantenimiento: En el período del mantenimiento, se lleva a cabo un proceso 

similar al desarrollado en la POO, esto es vigilar el correcto funcionamiento del 

sistema, corregir fallas en el comportamiento, etc. 

 

El modelo de métodos formales 

Agrupa actividades que llevan a la especificación matemática formal del software de 

cómputo. Los métodos formales permiten especificar, desarrollar y verificar un sistema 

basado en computadora por medio del empleo de una notación matemática rigurosa. 

(Pressman, 2010, pág. 44) 

 

En Ingeniería de Software, un método formal es un proceso que se aplica para 

desarrollar programas, y que explota el poder de la notación y de las pruebas 

matemáticas. Además, los requisitos, la especificación y el sistema completo deben 

validarse con las necesidades del mundo real. (Kuhn, Chandramouli, & Butler, 2002) 

 

Los métodos formales permiten representar la especificación del software, 

verificación y diseño de componentes mediante notaciones matemáticas. El uso de 

métodos formales permite plantear de manera clara la especificación de un 

sistema, generando modelos que definen el comportamiento en términos del “qué 

debe hacer” y no del “cómo lo hace”. (Fernández y Fernández, 2011) 

 

“Cuando durante el desarrollo se usan métodos formales, se obtiene un mecanismo 

para eliminar muchos de los problemas difíciles de vencer con otros paradigmas de la 

ingeniería de software” (Pressman, 2010, pág. 44). 

 

Aunque el modelo de los métodos formales no es el más seguido, promete un 

software libre de defectos. Sin embargo, se han expresado preocupaciones acerca de 

su aplicabilidad en un ambiente de negocios: 

 

 El desarrollo de modelos formales consume mucho tiempo y es caro. 

 Debido a que pocos desarrolladores de software tienen la formación necesaria 

para aplicar métodos formales, se requiere mucha capacitación. 

 Es difícil utilizar los modelos como mecanismo de comunicación para clientes 

sin complejidad técnica. (Pressman, 2010, pág. 44) 

 

Desarrollo de software orientado a aspectos 

Sin importar el proceso del software que se elija, los constructores de software 

complejo implementan de manera invariable un conjunto de características, 

funciones y contenido de información localizados. Estas características localizadas 



Modelos del Proceso de Software 

15 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

del software se modelan como componentes (clases orientadas a objetos) y luego 

se construyen dentro del contexto de una arquitectura de sistemas. (Pressman, 

2010, pág. 44) 

 

 
Figura 7. Ciclo de vida del Desarrollo de Software Orientado a Aspectos 

Fuente: El desarrollo de software Orientado a Aspectos (Tabares, Alferez Salinas, & Alferéz Salinas, 

2008) 

 

El desarrollo de software orientado a aspectos (DSOA), conocido también como 

programación orientada a aspectos (POA), es un paradigma de ingeniería de 

software relativamente nuevo que proporciona un proceso y enfoque metodológico 

para definir, especificar, diseñar y construir aspectos: “mecanismos más allá de 

subrutinas y herencia para localizar la expresión de una preocupación global” 

(Pressman, 2010, pág. 44) 

 

La figura 7 ilustra la forma como los aspectos evolucionan a través de todo el ciclo de 

vida de desarrollo de software. Los aspectos se clasifican de la siguiente forma: (1) 

aspectos tempranos, los cuales se especifican desde los requisitos hasta la 

arquitectura; (2) aspectos intermedios, los cuales se especifican en estructuras 

aspectuales al nivel del diseño; (3) aspectos finales, los cuales se especifican en 

lenguajes de programación especializados. (Tabares, Alferez Salinas, & Alferéz Salinas, 

2008) 

 

 

 

 

 

 



Modelos del Proceso de Software 

16 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

2.3 Subtema 3: El Proceso unificado  

“El proceso unificado es un intento por obtener los mejores rasgos y características de 

los modelos tradicionales del proceso del software, pero en forma que implemente 

muchos de los mejores principios del desarrollo ágil de software” (Pressman, 2010, 

pág. 46). Rumbaugh, Booch y Jacobson trabajaron juntos para crear un “método 

unificado”, con el objeto de combinar la mejor parte de cada uno de los modelos de 

software, es decir sus métodos individuales de análisis y diseño orientado a objetos. El 

resultado fue el lenguaje de modelado unificado (UML), el cual incluye una notación 

robusta para el modelado y desarrollo de los sistemas orientados a objetos. 

Pressman (2010) agrega: “El UML brinda la tecnología necesaria para apoyar la práctica 

de la ingeniería de software orientada a objetos, pero no da la estructura del proceso 

que guíe a los equipos del proyecto cuando aplican la tecnología” (pág. 46). 

 

“El proceso unificado (PU) y el UML se usan mucho en proyectos de toda clase 

orientados a objetos. El modelo iterativo e incremental propuesto por el PU puede y 

debe adaptarse para que satisfaga necesidades específicas del proyecto” (Pressman, 

2010, pág. 46). 

 

Fases de proceso unificado 

Teniendo en cuenta los aspectos mencionados previamente, Rational que 

recientemente fue comprada por IBM, elaboró un marco de referencia para el proceso 

de desarrollo de software basado en el modelo en espiral. Este método se conoce 

como RUP “Rational Unified Process” (figura 9). Para una mejor organización, el RUP 

agrupa las iteraciones en etapas y fases que facilitan la administración del proyecto. 

(Gil, 2004) 

 

 

 



Modelos del Proceso de Software 

17 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 
 

Figura 9. Mapa conceptual del Proceso Unificado de Rational 

Fuente: Ingeniería de software: Un enfoque práctico (Pressman, 2010, pág. 47) 

 

 

Etapa de ingeniería  

Esta etapa agrupa las fases de concepción y de elaboración, lo que básicamente le da 

por objetivos la conceptualización del sistema y el diseño inicial de la solución del 

problema. 

 

Fase de concepción 

Esta fase tiene como propósito definir y acordar el alcance del proyecto con los 

patrocinadores, identificar los riesgos asociados al proyecto, proponer una visión muy 

general de la arquitectura de software y producir el plan de las fases y el de 

iteraciones. 

 

Fase de elaboración 

Los casos de uso seleccionados para desarrollarse en esta fase permiten definir la 

arquitectura del sistema, se realiza la especificación de los casos de uso seleccionados 

y el primer análisis del dominio del problema, se diseña la solución preliminar del 

problema y comienza la ejecución del plan de manejo de riesgos, según las prioridades 

definidas en él. 

 

Etapa de producción 

En esta etapa se realiza un proceso de refinamiento de las estimaciones de tiempos y 

recursos para las fases de construcción y transición, se define un plan de 

mantenimiento para los productos entregados en la etapa de ingeniería, se 



Modelos del Proceso de Software 

18 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

implementan los casos de uso pendientes y se entrega el producto al cliente, 

garantizan-do la capacitación y el soporte adecuados. 

 

Fase de construcción 

El propósito de esta fase es completar la funcionalidad del sistema, para ello se deben 

clarificar los requerimientos pendientes, administrar el cambio de los artefactos 

construidos, ejecutar el plan de administración de recursos y mejoras en el proceso de 

desarrollo para el proyecto. 

 

Fase de transición 

El propósito de esta fase es asegurar que el software esté disponible para los usuarios 

finales, ajustar los erro-res y defectos encontrados, capacitara los usuarios y proveer el 

soporte técnico necesario. Se debe verificar que el producto cumpla con las 

especificaciones entregadas por las personas involucradas en el proyecto al inicio del 

mismo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Modelos del Proceso de Software 

19 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

2.4 Subtema 4: Modelos del proceso personal y del 
equipo  

El mejor proceso del software es el que está cerca de las personas que harán el 

trabajo. Si un modelo del proceso del software se ha desarrollado en un nivel 

corporativo u organizacional, será eficaz sólo si acepta una adaptación significativa 

para que cubra las necesidades del equipo de proyecto que en realidad hace el 

trabajo de ingeniería de software. (Pressman, 2010, pág. 48) 

 

Proceso personal del software (PPS) 

Watts Humphrey sugiere que, a fin de cambiar un proceso personal ineficaz, un 

individuo debe pasar por las cuatro fases, cada una de las cuales requiere capacitación 

e instrumentación cuidadosa. 

 

“El proceso personal del software (PPS) pone el énfasis en la medición personal tanto 

del producto del trabajo que se genera como de su calidad. Además, el PPS 

responsabiliza al profesional acerca de la planeación del proyecto” (Pressman, 2010, 

pág. 48). 

 

Vargas & Soto Durán (2010) afirman: “Este modelo está enfocado al desarrollo 

profesional del ingeniero, fomentando una adecuada administración de calidad de los 

proyectos de desarrollo, reducción de defectos del producto, estimación y planeación 

del trabajo”. 

 

Como sostiene Fernández (2009), El PSP enseña a los ingenieros lo siguiente: 

 Cómo manejar la calidad de sus proyectos. 

 Hacer las cosas simples para dar soluciones. 

 A mejorar tiempos de estimación y planeación. 

 Reducir los defectos de los productos. 

  

El 70% de los costos de desarrollo en un proyecto, lo constituyen las habilidades y 

los hábitos del trabajo de los ingenieros, los cuales determinan en gran parte el 

resultado del desarrollo de software. El proceso personal de software PSP (el cómo) 

puede ser utilizado por los ingenieros como una guía a un acercamiento disciplinado 

y estructurado al desarrollo de software. (Fernández, 2009, pág. 37) 

 

 

Según Fernández (2009), el PSP puede aplicar a muchas partes del desarrollo de 

software, incluyendo: 

 Desarrollo de programas. 



Modelos del Proceso de Software 

20 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

 Definición de requisitos. 

 Estructura de la documentación. 

 Pruebas del sistema. 

 Mantenimiento de los sistemas. 

 Desarrollo de sistemas de software grandes. 

 

Pressman declara que el modelo del PPS define cinco actividades estructurales: 

 

Planeación. Esta actividad aísla los requerimientos y desarrolla las estimaciones tanto 

del tamaño como de los recursos. Además, realiza la estimación de los defectos (el 

número de defectos proyectados para el trabajo). Todas las mediciones se registran en 

hojas de trabajo o plantillas. Por último, se identifican las tareas de desarrollo y se crea 

un programa para el proyecto. 

Diseño de alto nivel. Se desarrollan las especificaciones externas para cada 

componente que se va a construir y se crea el diseño de componentes. Si hay 

incertidumbre, se elaboran prototipos. Se registran todos los aspectos relevantes y se 

les da seguimiento. 

Revisión del diseño de alto nivel. Se aplican métodos de verificación formal para 

descubrir errores en el diseño. Se mantienen las mediciones para todas las tareas y 

resultados del trabajo importantes. 

Desarrollo. Se mejora y revisa el diseño del componente. El código se genera, revisa, 

compila y prueba. Las mediciones se mantienen para todas las tareas y resultados de 

trabajo de importancia. 

Post mórtem. Se determina la eficacia del proceso por medio de medidas y mediciones 

obtenidas (ésta es una cantidad sustancial de datos que deben analizarse con métodos 

estadísticos). Las medidas y mediciones deben dar la guía para modificar el proceso a 

fin de mejorar su eficacia. 

 

Proceso del equipo de software (PES) 

De acuerdo con Watts Humphrey “el objetivo de éste es construir un equipo 

“autodirigido” para el proyecto, que se organice para producir software de alta 

calidad”. 

 

Watts Humphrey desarrolla el proceso de software de equipo TSP para la unidad 

operacional más pequeña de las organizaciones de software, el equipo del proyecto. 

TSP fue diseñado para ser un proceso de nivel 5 CMM, para los equipos del proyecto. 

(Fernández, 2009, pág. 37) 

 

TSP es la fase posterior de PSP, está diseñado para el trabajo de equipos de 

desarrollo de software autodirigidos, que se orienta al desarrollo de productos con 



Modelos del Proceso de Software 

21 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

el mínimo de defectos en tiempo y costos estimados. Cuenta con planes detallados 

y procesos como revisiones personales, inspecciones e índices de desempeño de 

calidad, y el fomento de la integración del equipo. (Mondragón Campos, 2011) 

 

Humphrey define los objetivos siguientes para el PES: 

 Formar equipos autodirigidos que planeen y den seguimiento a su trabajo, que 

establezcan metas y que sean dueños de sus procesos y planes. Éstos pueden 

ser equipos de software puros o de productos integrados (EPI) constituidos por 

3 a 20 ingenieros. 

 Mostrar a los gerentes cómo dirigir y motivar a sus equipos y cómo ayudarlos a 

mantener un rendimiento máximo. 

 Acelerar la mejora del proceso del software, haciendo del modelo de madurez 

de la capacidad (CMM), nivel 5, el comportamiento normal y esperado. 

 Brindar a las organizaciones muy maduras una guía para la mejora. 

 Facilitar la enseñanza universitaria de aptitudes de equipo con grado industrial. 

 

Según Fernández (2009) el proceso del software del equipo (TSP), junto con el proceso 

personal del software (PSP), ayuda al ingeniero de alto rendimiento a: 

 Aseguramiento de la calidad de los productos de software. 

 Crear productos de software seguros. 

 Mejora el proceso de gerencia en una organización. 

 

Adicionalmente, Fernández (2009) agrega que los grupos de la ingeniería que utilizan 

el TSP aplican conceptos integrados del desarrollo de sistemas orientados al software, 

llevando al equipo a: 

 Establecer metas. 

 Definir papeles del equipo. 

 Determinación de riesgos. 

 Producir un plan del equipo.  

 

Igual que el PPS, el PES es un enfoque riguroso para la ingeniería de software y 

proporciona beneficios distintivos y cuantificables en productividad y calidad. El 

equipo debe tener un compromiso total con el proceso y recibir capacitación 

completa para asegurar que el enfoque se aplique en forma apropiada. (Pressman, 

2010, pág. 50) 

 

 

 



Modelos del Proceso de Software 

22 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

3. Preguntas de Comprensio n de la 
Unidad 

1. ¿Con qué objeto fueron propuestos los modelos prescriptivos? 

Los modelos de proceso prescriptivo fueron propuestos originalmente para poner 

orden en el caos del desarrollo de software. La historia indica que estos modelos 

tradicionales han dado cierta estructura útil al trabajo de ingeniería de software y que 

constituyen un mapa razonablemente eficaz para los equipos de software. 

 

2. ¿Qué se entiende por el modelo de cascada? 

Es un enfoque metodológico que ordena rigurosamente las etapas del ciclo de vida del 

software, de forma que el inicio de cada etapa debe esperar a la finalización de la 

inmediatamente anterior. 

 

3. ¿Cómo funciona el modelo de prototipos? 

El paradigma de construcción de prototipos comienza con la recolección de requisitos. 

El desarrollador y el cliente encuentran y definen los objetivos globales para el 

software, identifican los requisitos conocidos y las áreas del esquema en donde es 

obligatoria más definición. 

 

4. ¿Qué pretende el desarrollo basado en componentes (DSBC)? 

El DSBC trata de sentar las bases para el diseño y desarrollo de aplicaciones 

distribuidas basadas en componentes software reutilizables. Dicha disciplina cuenta 

actualmente con un creciente interés, tanto desde el punto de vista académico como 

desde la industria, en donde la demanda de mecanismos y herramientas de desarrollo 

basados en componentes es cada día mayor. 

 

5. ¿Con qué objeto se creó el proceso unificado? 

El proceso unificado se originó con el objeto de combinar la mejor parte de cada uno 

de los modelos de software, es decir sus métodos individuales de análisis y diseño 

orientado a objetos. El resultado fue el lenguaje de modelado unificado (UML), el cual 

incluye una notación robusta para el modelado y desarrollo de los sistemas orientados 

a objetos. 

 

 

 

 



Modelos del Proceso de Software 

23 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

4. Material Complementario 

Los siguientes recursos complementarios son sugerencias para que se pueda ampliar la 

información sobre el tema trabajado, como parte de su proceso de aprendizaje 

autónomo: 

 

Videos de apoyo: 

Producción de software  

https://www.youtube.com/watch?v=FAhdlq0Zytk&t=265s 

 

Bibliografía de apoyo: 

Gamma , E., Helm, R., Johnson, R., & Vlissides, J. (2003). Patrones de Diseño. Addison-

Wesley. 

Schach, S. (2006). Ingeniería de Software Clásica y Orientada a Objetos. Sexta edición. 

McGraw-Hill. 

 

Links de apoyo: 

Problemas con el desarrollo incremental 

http://www.SoftwareEngineering-9.com/Web/IncrementalDev/ 

 

Ingeniería de software de cuarto limpio 

https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Cleanroom/ 

  

Instituto de Ingeniería de Software 

http://www.sei.cmu.edu 

 

Object Management Group (OMG) 

http://www.omg.org 

 

 

 

 

 

 

https://www.youtube.com/watch?v=FAhdlq0Zytk&t=265s
http://www.softwareengineering-9.com/Web/IncrementalDev/
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Cleanroom/
http://www.sei.cmu.edu/
http://www.omg.org/


Modelos del Proceso de Software 

24 
 

©
  U

n
iv

er
si

d
ad

 E
st

at
al

 d
e 

M
ila

gr
o

 –
 U

N
EM

I 
 

FORMATO CONTROLADO: FR0018/ v1.0 / 18-11-2019 

5. Bibliografí a 

» Bertoa, M., Troya, J., & Vallecillo, A. (2002). Aspectos de calidad en el desarrollo 
de software basado en componentes. 

» Fernández y Fernández, C. (2011). Métodos formales aplicados a la industria 
del software. REPOSITORIO NACIONAL CONACYT. 

» Fernández, H. (2009). Procesos de ingeniería de software. Obtenido de 
https://revistas.udistrital.edu.co/index.php/vinculos/article/view/4141/5806 

» Gamma , E., Helm, R., Johnson, R., & Vlissides, J. (2003). Patrones de Diseño. 
Addison-Wesley. 

» Gil, R. (2004). Estructura básica del proceso unificado de desarrollo de 
software. Sistemas y Telemática. 

» Kuhn, D., Chandramouli, T., & Butler, R. (2002). Cost effective use of formal 
methods in verification and validation. Maryland, USA. 

» Laboratorio Nacional de Calidad del Software. (2009). Curso de Introducción a 
la Ingeniería de Software. España: Instituto Nacional de Tecnologías de la 
comunicación (INTECO). 

» Mondragón Campos, O. (2011). Integrando TSP y CMMI: Lo mejor de dos 
mundos. Software Guru, 50. 

» Pressman, R. (2010). Ingeniería del software: Un enfoque práctico. Mc Graw 
Hill. 

» Schach, S. (2006). Ingeniería de Software Clásica y Orientada a Objetos. Sexta 
edición. McGraw-Hill. 

» Sommerville, I. (2011). Ingeniería de Software. México: Pearson Educación. 

» Tabares, M., Alferez Salinas, G., & Alferéz Salinas, E. (2008). El desarrollo de 
software Orientado a Aspectos: Un Caso Práctico para un Sistema de Ayuda en 
Línea. Avances en Sistemas e Informática. 

» Troya, J., Vallecillo, A., & Fuentes, L. (2017). Desarrollo de sodtware basado en 
componentes. 

 
      

 

 


	1. Unidad 1: La ingeniería de Software y los modelos del proceso
	Tema 2: Modelos del Proceso de Software
	Objetivo:
	Introducción:

	2. Información de los subtemas
	2.1 Subtema 1: Modelos de proceso prescriptivo
	Modelo de la cascada
	Modelos de proceso incremental
	Modelos de proceso evolutivo
	Modelos concurrentes

	2.2 Subtema 2: Modelos de proceso especializado
	Desarrollo basado en componentes
	El modelo de métodos formales
	Desarrollo de software orientado a aspectos

	2.3 Subtema 3: El Proceso unificado
	Fases de proceso unificado

	2.4 Subtema 4: Modelos del proceso personal y del equipo
	Proceso personal del software (PPS)
	Proceso del equipo de software (PES)


	3. Preguntas de Comprensión de la Unidad
	4. Material Complementario
	5. Bibliografía

